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SUMMARY

This paper discusses the unstructured grid method to compute �ows around geometrically complex
bodies having relative motions. To enhance the capability to treat complex geometries, a surface trian-
gulation method using the advancing front method coupled with geometric feature extraction technique
is described. Stereolithography (STL) data are adopted as an interface between a CAD system and the
surface grid generator. Moving bodies are treated by the overset unstructured grid method. The capa-
bility of the method is demonstrated for simulations of an airplane separation process from a rocket
booster and a hornet in �ight. In the hornet simulation, the detailed components such as antennas, legs
and a sting are all included in the computational grid. The �apping wings are treated by the overset
unstructured grid method where a grid around the wing is overlapped on a stationary grid around the
body of a hornet and moves with time to simulate the �apping motion. Copyright ? 2003 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

The computational �uid dynamics (CFD) has achieved a signi�cant progress in its algorithms
and the applications in the last 30 years. In these days the CFD is considered to be very close
to its maturing stage. It is certainly true that the CFD is routinely applied to �ows around
airfoils and wings for the performance analysis and the design of airplanes. For geometrically
complex and moving-body problems, however, the current CFD still needs painful e�orts for
the grid generation and enormous CPU times to obtain the desired accuracy level.
Di�culty in generating a grid around a complex geometry hinders the practical use of the

CFD in engineering analysis and design. To overcome this, unstructured grids are becom-
ing popular for complex geometry CFD because of the easiness of tetrahedral volume grid
generation. However, a time-consuming procedure is still required for the surface grid gener-
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ation. This pre-process of the grid generation becomes more critical as the complexity of the
geometry increases.
Unsteady �ow computations around multiple bodies in relative motion have another

di�culty in grid. In the unstructured grid method, moving bodies are treated by deform-
ing and remeshing the grids. However, a part of the computational grid or in some cases the
whole grid has to be regenerated at every time step for computation of unsteady �ows with
large movements of bodies. This procedure may become quite complex and computationally
expensive. A simple and e�cient approach should be developed to treat such a problem.
In this paper, approaches to treat complex and moving body problems are discussed. For

the surface meshing around a complex geometry, the advancing front method coupled with
the geometric feature extraction is directly applied to the stereolithography (STL) data that
is an output of the CAD. An automatic revision procedure of ill-conditioned facets in STL
data, reconstruction method of ridges, and the GUI interface to control the grid density sig-
ni�cantly reduce the surface meshing work. Overset unstructured grid method is used for the
moving body problems. This approach holds great promise for extending the applicability of
the unstructured grid method for real engineering problems without much needed for code
development.
The methods are applied to two �ow problems in this paper to demonstrate the capability

of the present approach. One is a separation simulation of an experimental supersonic air-
plane and a rocket booster. The other is a �ow computation around an insect with �apping
wings. These two problems are challenging subjects for the current CFD not only because
of the geometrical complexity but also due to the moving bodies that complicates the �ow
physics.

2. GRID GENERATION

The grid generation procedure employed here is shown in Figure 1. The detailed procedure
of the surface meshing is described in References [1, 2] and here we discuss its outline. The
basic strategy is to use both automatic and GUI-based interactive procedures e�ectively. The
automatic meshing is preferable to reduce the user works. At the same time, the controllability
of the local grid density and quality by user is also very important for surface meshing because
the surface mesh directly a�ect to the solution accuracy.
The surface meshing starts from the input of the STL �le which is one of the CAD

output formats. The advantage of the STL data is the simplicity since they contain only pure
geometric information of the co-ordinates of each triangular facet and its corresponding unit
normal vector. Owing to the simplicity of the STL �le, other geometry data such as a DXF
�le and a structured surface grid �le can be easily converted to this format.
STL data are used as a background grid for the surface meshing. For this purpose, a set

of STL facets must cover the original surface without overlaps or gaps. STL data, however,
often contain some ill-conditioned facets due to errors in the tessellation process because the
STL �le format does not provide for consistency and completeness tests. These facets of-
ten cause some con�icts in the following steps, for example, when ridges are automatically
reconstructed from the original STL data, or when the local direction of surface meshing is
calculated. For this problem, a cleanup procedure of the STL data was developed to automat-
ically correct or remove those ill-conditioned facets. Commonly encountered ill-conditioned
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Surface & volume grids output 

Cleanup of STL data 

Construction of initial front 

Surface meshing by the advancing front method 

Computational boundary definition & gridding 

Extraction of geometric features 

Surface recovery 

Volume grid generation 

STL file input

Figure 1. Flowchart of grid generation.

Figure 2. Examples of sticking facets in STL data and their revisions.

facets, such as shown in Figure 2 for examples, are automatically detected and �xed by
a speci�ed procedure for each pattern. The remaining ill-conditioned facets that do not meet
the commonly encountered patterns will be revised by means of the GUI tool de-
veloped here.
For the surface triangulation, the direct advancing front method [3] is applied to the back-

ground grid de�ned by the revised STL data. The set-up of the initial front for the advancing
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Figure 3. Extracted geometric features for the NALs experimental
airplane with rocket booster for launch.

front method, however, required a time-consuming procedure for complex geometries. Here,
a geometric feature extraction technique is utilized to simplify the initial front set-up. Typical
geometric features are ridges and corners as shown in Figure 3 and the initial fronts of the
advancing front method are set-up on these curves. The extraction of these featuring curves
is important to accurately represent the original con�guration [4]. They are also utilized to
control the local grid density.
The geometric features are detected by the folding angles between two neighbouring STL

facets. The ridges detected by the folding angle, however, have not yet been connected to
each other in this stage, but may be isolated, and do not represent the model properly. The
automatic eliminations or reconnections of ridges are performed by checking the distances and
angles to the adjacent ridges. Some manual treatments of ridges may be required to recover
the proper features accordingly.
Along each featuring curve, the initial front for the advancing front method is constructed

by distributing node points by the Vinokur’s stretching function [5]. The number of points
and the clustering parameters must be speci�ed using a GUI command. At this stage, local
grid density is also controlled by adding point sources and line sources on the user-speci�ed
region.
During the surface triangulation, the new node position of the surface grid is temporarily

determined with a �rst-order correction so as not to fail in the triangulation. The generated
surface grid may not, however, represent the original con�guration accurately if the STL-
de�ned original data is not �ne enough. In order to improve the grid quality, a surface recovery
algorithm using the second-order interpolation [4] is applied after the surface triangulation.
Figure 4 shows a generated surface grid for the NAL experimental airplane piggybacked on

the rocket booster. The surface grid covers faithfully the CAD de�ned original con�guration
including such as the attachments of the airplane=booster, �ttings for the launcher, and fringes
on the rocket booster. Total number of the surface triangles is 200 084 and the required CPU
time on Pentium III (900 MHz) PC is about 10 min for the surface grid generation process.
Additional 30–60 min was required for the interactive operations on GUI screen, such as
creating initial fronts in this case.
After the surface meshing, other computational boundaries are de�ned and the tetrahedral

volume grid is generated by a Delaunay-type generation method [6].
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Figure 4. NALs experimental supersonic airplane with rocket booster for launch.
(a) Entire view and, (b) enlarged view showing the surface grid.

3. OVERSET UNSTRUCTURED GRID

In structured grids, moving body problems have been successfully simulated by the overset
grid approach or the so-called Chimera method [7]. However, the approach still requires tech-
nical expertise and considerable man-hours to construct the intergrid communications among
overlapping grids. One of the reasons for this di�culty is that, as the complexity of the geom-
etry increases, the number of grids which must be overlap increases so far as the structured
grids are used.
It is a reasonable idea to use unstructured grids for the overset concept [8]. By use of

unstructured meshes, the number of submeshes required for covering the �ow �led around
complex geometries can be signi�cantly reduced as compared with that needed in the overset
structured grid. It can also extend the applicability of the unstructured-grid method to multiple
moving-body problems without much need for code development.
In the Chimera concept, there are two major steps to establish intergrid communications

among overlapping unstructured grids:
Step 1: Hole-cutting, which involves dividing all points of each subgrid into two groups,

active and non-active points. The intergrid-boundary points are identi�ed as the active points
next to non-active points.
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Step 2: Identi�cation of interpolation stencils, which involves a search of donor cells for
all intergrid-boundary points.
The second step, identi�cation of interpolation stencils, is straightforward for unstructured

grids. Once a donor cell is identi�ed, values on the point in this cell are interpolated from
values on the vertex of the cell using the volume co-ordinates for a tetrahedral cell. This
treatment of the interface between meshes is �rst-order and non-conservative. It is simple and
practically enough for the accuracy of computed large-scale values such as pressure loading
on surfaces [9]. However, a conservative treatment of the interface should be developed
when the oversetting is used near critical regions such as shear layers for the Navier–Stokes
computations.
In the present approach, the donor cell for the interpolation at each intergrid-boundary point

is identi�ed during the process of hole-cutting. Therefore, the �rst step is described here. The
detailed description can be found in Reference [8].
The hole-cutting must be performed completely automatically if unstructured grids are used

for the overset approach. Manual creations or corrections of the hole-cutting for the overset
unstructured grids are almost impossible because of the unstructured numbering of the node
points. Here, the wall distance is used as a parameter to construct the intergrid boundary. In
the mesh overlapping region, a node point having a shorter distance to the solid boundary
which belongs to the same grid of the node is selected as the active point in that grid. This
procedure is very simple, yet it automatically de�nes the intergrid boundary and overlapping
layer between grids. The overlapping layer has a width of mostly one or two cells. The
wall distance is calculated only once at the beginning of the computation. It is computed by
a method similar to the advancing front method, where the computing front of the wall
distance is marched from the wall boundary to the outer boundary.
The use of the wall distance for the automatic de�nition of the intergrid boundary is

simple and very reliable. However, all node points must �nd their donor cells in the overset
meshes. The number of searches easily surpasses one million for three-dimensional problems.
Therefore, an e�cient and reliable search algorithm must be developed.
The neighbour-to-neighbour jump search algorithm [4] is e�ciently utilized in the present

method. In this method, the searching is performed by judging which side the target point
locates from the current cell and moving to the neighbouring cell of the direction. This search
is very e�cient because the search path becomes one-dimensional even in a three-dimensional
�eld.
Grids generated inside the bodies are also used to improve the reliability of the search

by making the searching domain to be convex. These subsidiary grids are generated as
a byproduct of the Delaunay triangulation method. The internal grids are also e�ective to
get the in–out information that is important for the reliability of the donor-cell search.

4. FLOW SOLVER

The Euler equations for compressible inviscid �ows are written in an integral form as follows:

@
@t

∫
�
Q dV +

∫
@�
F(Q) · n dS=0 (1)
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where Q=[�; �u; �v; �w; e]T is the vector of conservative variables, � the density, u; v; w the
velocity components in the x; y; z directions, and e the total energy. The vector F(Q) represents
the inviscid �ux vector and n is the outward normal of @� which is the boundary of the control
volume �. This system of equations is closed by the perfect gas equation of state.
The equations are solved by a �nite volume cell-vertex scheme. For the control volume of

a non-overlapping dual cell, Equation (1) can be written in an algebraic form as follows:

@Qi

@t
=
1
Vi
Ri (2)

and

Ri=−∑
j(i)
�Sijh(Q+

ij ;Q
−
ij ; nij) (3)

where �Sij is the segment area of the control volume boundary associated with the edge
connecting points i and j. This segment area, �Sij, as well as its unit normal, nij, can
be computed by summing up the contribution from each tetrahedron sharing the edge. The
subscript of summation, j(i), means all node points connected to node i.
The term h in Equation (3) is an inviscid numerical �ux vector normal to the control

volume boundary. It is computed using an approximate Riemann solver of Harten–Lax-van
Leer–Einfeldt–Wada [10]. The values on both sides of the control volume boundary, Q±

ij , are
evaluated by a linear reconstruction of the primitive gas dynamic variables with Venkatakr-
ishnan’s limiter [11] for the second-order spatial accuracy.
With a time increment, �Q=Qn+1 − Qn, and a linearization of the numerical �ux term

as hn+1ij = hnij + A
+
i �Qi + A−

j �Qj, a procedure similar to the conventional derivation of the
LU-SGS on structured grids [12] leads to the following equations:(

Vi
�t
I+

∑
j(i)
�SijA+i

)
�Qi +

∑
j(i)
�SijA−

j �Qj=Ri (4)

The LU-SGS method on unstructured mesh can be derived by splitting the node points j(i)
into two groups, j∈L(i) and j∈U (i), for the second summation in LHS of Equation (4).
The �nal form of the LU-SGS method for the unstructured grid becomes:
Forward sweep:

�Q∗
i =D

−1
[
Ri − 0:5

∑
j∈L(i)

�Sij(�h∗j − �A�Q∗
j )

]
(5a)

Backward sweep:

�Qi=�Q∗
i − 0:5D−1 ∑

j∈U (i)
�Sij(�hj − �A�Qj) (5b)

where �h= h(Q + �Q) − h(Q) and D is a diagonal matrix derived by Jameson–Turkel
approximation of Jacobian [12] as, A±=0:5(A ± �AI) where �A is a spectral radius of
Jacobian A.

D=

(
Vj
�t
+ 0:5

∑
j(i)
�Sij�A

)
I (6)
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The lower=upper splitting of Equation (5) for the unstructured grid is realized by using
a grid reordering technique [13] to improve the convergence and the vectorization. The ex-
tension to the Navier–Stokes equations is described in Reference [14] with discussions of its
accuracy and e�ciency for various �ow problems.
The �ow solver must be modi�ed to account for the use of multiple meshes. In addi-

tion to the boundaries of the computational domain, subgrids have intergrid boundaries with
the neighbouring donor subgrids and may also contain holes. The non-active cells must be
excluded or blanked from the �ow �eld solution.
All node points have information as to whether they belong to the active or non-active

cells. Namely,

IBLANK =

{
1 if a point is not blanked

0 if a point is blanked:
(7)

This value is 1 or 0 depending on the area inside or outside of the computational subregion.
In the �ow solver, the right-hand side vector Ri in Equation (5) is multiplied by the value
IBLANK(i). Namely the �Q in the outside region (hole region) is set to be zero.

5. NUMERICAL RESULTS

5.1. Simulation of a supersonic airplane=rocket booster separation

National Aerospace Laboratory (NAL) of Japan is currently working on a project to develop
experimental supersonic airplanes [15] as a basic study for the next generation supersonic
transport. The experimental airplane is unpowered and a solid rocket booster will be used to
launch it to a high altitude at a speed of about Mach 2.5.
The geometry shown in Figure 4 was produced by NAL using the CATIA CAD software.

It includes detailed components, such as the attachments of the airplane=booster, �ttings for
the launcher, and fringes on the rocket booster. To compute the �ow around this complex
geometry by the conventional overset structured grid method will need a time consuming
work for generating the grid due to the small components attached on the model. Thus, this
is a good test case for the present method in order to evaluate its capability for a multiple
moving-body problem with complex geometry.
At the beginning, the unstructured surface grids on the airplane and the rocket booster were

generated separately. Then, two unstructured volume grids, each of which covers the airplane
and the rocket booster, respectively, as shown in Figure 5, were generated using the Delaunay
method. The outer cylindrical grid was generated for the airplane and the inner cylindrical
grid for the rocket booster. The numbers of tetrahedral cells for the airplane and booster grids
are 3 268 529 and 1 436 487, respectively. For a simulation of the airplane=rocket booster
separation, the inner grid moves with the rocket booster in the stationary outer cylindrical
grid.
Plate 1 shows the grids on symmetrical plane and a cut plane perpendicular to the axis of

the airplane fuselage after the hole cutting. Two subgrids, one for the airplane and one for the
booster, overlap each other. The overlapping layer between two grids has a width of mostly
one or two cells.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:769–783



UNSTRUCTURED GRID METHOD 777

Figure 5. Overset grids for the supersonic airplane (outer cylindrical region)
and rocket booster (inner cylindrical region).

Computations were performed at a Mach number of 2.5 with an assumption of the in-
viscid and quasi-steady �ow. The angle of attack of the airplane was �xed at 2:0◦ and the
angle of attack of the rocket booster relative to the airplane was at −2:0◦ (0◦ to freestream).
The relative horizontal location of the airplane and rocket was �xed to 0, the relative ver-
tical distances between the airplane and the booster (�Z) were increased in a prescribed
motion.
Plate 2 shows the computed pressure contours around the airplane and booster. Shock waves

generated at the noses of the airplane and the booster create a complex re�ection pattern in
the narrow region between the bodies.
Figure 6 [16] shows comparisons of the lift and pitching moment coe�cients between

computational and wind tunnel results. In these �gures, �CL denotes the di�erence between
the lift coe�cient of the multiple body case and the one of the isolated body case. The value
�CM denotes the same di�erence of the pitching moment coe�cients.
At the beginning of the booster separation from the airplane, the shock wave from the

booster nose hits the forward part of the lower surface of the airplane wing. This causes
an increase in the pitching moment and lift of the airplane. Then, the pitching moment of
the airplane moves to be negative as the impinging point of the booster-nose shock on the
lower surface of the airplane moves downward. At �Z =2m, the pitch-down moment of the

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:769–783



778 K. NAKAHASHI, Y. ITO AND F. TOGASHI

Figure 6. Comparisons of (a) lift and (b) pitching moment coe�-
cients between the experimental and computational results at M∞=2:5,

angles of attack of the airplane at 2◦ and the booster at 0◦.

airplane becomes the maximum value, and then it decreases temporarily when the impinging
point of the booster shock moves downstream of the airplane wing. However the pitch-down
tendency of the airplane occurred again when the booster shock hits the tail wing of the
airplane. The pitching moment and lift of the booster are decreased due to the e�ect of not
only the shock wave from the airplane but also the re�ecting shock wave of itself as shown
in Plate 2. Then, the pitching moment of the booster moves to be positive as the impinging
point of the shock wave from the airplane moves downward.
The computations were executed in two cases: one for the full detailed con�guration shown

in Figure 4, and one for a clean con�guration which does not have any small compo-
nents such as the attachments of the airplane=booster, �ttings for the launcher, and fringes
on the rocket booster. In the conventional structured grid CFD, these small parts are
often neglected because of the di�culty of the grid generation. It is also thought that the
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Plate 1. Overset grids on: (a) symmetric plane and (b) a cross-sectional plane.
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Plate 2. Computed pressure contours of supersonic airplane=rocket booster separa-
tion at M∞=2:5, angles of attack of the airplane at 2◦ and the booster at 0◦ and

(a) �Z = 0:4 m, (b) �Z =2:4 m, (c) �Z =5:0 m.
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Plate 3. Cut view of tetrahedral grid (741 728 nodes, 4 183 735 cells).

Plate 4. Computed pressure distributions on a lower surface of a �apping hornet.
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Figure 7. Hornet model and ridges (blacklines).

e�ect of those small components on the aerodynamic coe�cients is negligible. In the present
overset unstructured grid approach, to include the small components into the computation is
straightforward.
By comparing two computed results, with and without the fringes, the e�ect of the connect-

ing fringes is relatively small for the airplane aerodynamic coe�cients. However, as shown
in Figure 6, the peak values of �CL and �CM of the booster are apparently a�ected by
the fringes and the computed results with the detailed con�guration agree better with the
experiment.

5.2. Flow around a hornet with �apping wings

The method was applied to a hornet model which is shown in Figure 7. The CAD data was
given by a DXF �le which was converted to the STL �le. After the cleanup of the data,
the surface grid generation method was applied to the revised surface. In the reconstruction
of geometric features, several ridges were added particularly at the legs because the de�ned
surface was relatively rough. Surface triangulation was then performed as shown in Figure 8.
The generated surface mesh has 132 626 triangular faces. The required CPU time on Pentium
III (600MHz) PC is about 3min for the surface grid generation process in this case. The total
required time for the surface mesh was about 1 day. Most of these works was to eliminate
interfered faces that were contained in original CAD data given by DXF �les. If the model
is given by a CAD-de�ned solid model, this modi�cation becomes trivial.
Plate 3 shows cut views of the volume grid which has 4 183 735 tetrahedra in it.
A hornet �ies at a speed of about 6m=s with Reynolds number of 4200 based on the forward

�ight speed and the chord length of the wing. The �apping frequency is about 100 Hz [17].
In this paper, however, the �ow was computed using the compressible Navier–Stokes �ow
solver instead of the incompressible one. This is mainly because of saving the CPU times for
unsteady �ow computations.
The computations were performed at a Mach number of 0.12 with the Reynolds number of

4200. With this low Mach number, the compressibility e�ect is negligible. Reduced frequency
de�ned as k=!∗(c=2U ) was adjusted to the 100 Hz with 6 m=s �ight speed; namely a ratio
between the �ow velocity and the �apping wing tip velocity was adjusted.
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Figure 8. Surface grid around a hornet.

Figure 9. Flapping wing motions and the intergrid boundaries of wing grids.
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Figure 10. Computed velocity vectors near the wing at 70% semi-span location: (a) beginning of
downstroke, (b) beginning of rotation at the end of downstroke motion, (c) beginning of upstroke,

(d) beginning of rotation at the end of upstroke motion.

The wing motion must be speci�ed in translational and rotational angles. However, a precise
data of the wing motion is not available for a hornet in forward �ight. In this paper, the wing
motion was speci�ed based on the experimental set-up of Dickinson [18]. Figure 9 shows
the �apping motion of the wing with the outer boundaries of the wing grids after the hole
cutting. The �apping plane is declined in 30◦ [17].
Figures 10 show the velocity vectors on a plane at 70% span location of the wing. Solid

lines in the �gures are the intergrid boundary lines of two overlapping grids. Figure 10(a)
is the velocity vectors at the beginning of the downstroke where the wing turns over rapidly
from the positive angle of attack to negative. This turn over creates a vortex near the trailing
edge. A similar feature can be seen in Figure 10(c) where the wing starts the upstroke.
This vortex shedding by the rotation of the wing at each end of up and down strokes may
e�ectively generate lift and thrust as pointed out by Dickinson et al. [18]. Figure 10(b) is the
�ow vectors at the end of the downstroke and the wing is about to turn from negative angle
of attack to positive. At this stage, a strong down wash can be observed due to the combined
e�ect of the down stroke speed and the positive angular velocity.
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Plate 4 shows the computed pressure distributions of a hornet with �apping wing. Both at
the beginning and the end of the down stroke, relatively higher pressure on the lower surface
of the wing can be observed. This is also due to the rapid rotation of the wing at each end
of up and down strokes. It is also observed that relatively higher pressure region appears on
the chest of the hornet when the wing �nishes the down stroke and is about to move upward.
It is considered that the wake of the down stroke and the angular motion of the wing cause
such a higher pressure region on the lower surface of the body.

6. CONCLUSION

Overset unstructured grid method was successfully applied to simulate �ow�elds around sepa-
rating airplane=rocket booster and a realistic model of a hornet with �apping wing in forward
�ight. Detailed surface meshing was achieved by the direct advancing front method coupled
with geometrical feature extraction. Pre-treatment of the Stereolithography (STL) data is also
an important key technology for these kinds of complex con�gurations. Overset unstructured
grid approach allows the treatment of large movements of bodies without any di�culty.
The computed results of the �ying hornet show qualitatively reasonable �ow features. At

each end of up and down strokes, vortexes are shed by the twisting of the wing that may
e�ectively generate the lift and thrust. However, lift and thrust variations in time were not
good at this stage. The movement of the wing was taken from an experimental set-up for
a �y in hovering. To obtain reasonable lift and thrust with �apping motion, the speci�cation
of the �apping movement of the wing must be improved. Moreover, wings of insects are
usually very thin and elastic. The deformation of the wing must be another important factor
to e�ectively produce the lift and thrust for insects. The overset unstructured grid will be
a practical approach even for such a �ow simulation if it is coupled with a dynamic mesh to
treat the wing deformation.
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